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1 1bf Thrust”

Donarp F. Regves*
TRW Systems, Redondo Beach, Calif.

Nomenelature
Al = impulse bit per thruster, per firing, 1b-sec
J = vehicle moment of inertia, slug-ft2
¢ = angular position, rad
F = thrustlevel of each thruster, Ibf
r = moment arm of each thruster, {t
Is, = specific impulse, sec
w = propellant flowrate per thruster, lb/sec
w = average total propellant consumption, Ib/sec
W = total propellant consumption per cycle, Ib
Ay = totalangular rate change per firing, rad/sec
6, = initial angular rate, rad/sec
6 = angular rate after first firing, rad/sec
ty = firing time (pulse width), sec
9, = one-half the limit cycle deadband, rad

UTHERLAND and Maes! pointed out in their article

that minimum impulse bit (AI) has a strong influence on
the limit-cycle efficiency and that halving Al can be twice
as effective as doubling specific impulse (I;,). While this
is essentially true, it should be remembered that the impulse
bit is the product of an average thruster on-time, propellant
flowrate and the effective I,. Thus, the (AI)2/I, portion
of the average propellant consumption equation can be re-
duced to the form (w)2%(f%)%sp, where f is the average on-time
and % the propellant flowrate per thruster. Now if the only
requirement is to minimize propellant consumption, the
ideal solution is to minimize the thruster on-time, the pro-
pellant flowrate, and the specific impulse. On the other
hand, the derivation of this equation is based on the assump-

tion that AI is fixed at some level based on maximum dis- -

turbing torques, secondary propulsion system requirements,
and guidance system limitations.2 The original form of the
equation must therefore be used and specific impulse should
be as high as possible.

Although the form of the average propellant consumption
equation is generally agreed upon, the numerical coefficient
changes each time the equation appears. I feel that the
exact equation should be documented as it is being used in
the design of various vehicles. The most probable average
propellant consumption equations are as follows:

- 2 (AD)r )
w=3 ol (for a pair of coupled thrusters) (1)
-~ 1 (AD> N
=5 6.1, (for a pair of thrusters) (2

The derivation of these equations is presented in the fol-
lowing paragraphs together with the maximum possible
propellant consumption equations. The numerical coeffi-
cient varies because the actual propellant consumption is a
function of a statistically distributed oscillation frequency.
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The total angular rate change per firing for a pair of coupled
thrusters is given by

Aby = 2I0rte/J (3)

The equivalent total propellant consumption per cycle is
therefore

W = 4ty
= 2A00J /11 @
The average period per cycle (¢1) is given by
to= 26,/|6:] + 26./|6] )
where | Ady| is equal to:
[AGo| = |61] + (6] (6)
Equation (5) can therefore be combined to give
26, Ad,
= Ak T @

The average total propellant consumption is therefore
% = (2A60 /L,r)(1/t) )
The frequency (f1) of the limit cycle oscillation is
16, Ady — (8

h= = T ah ®

The initial angular rate (6,) at which the vehicle enters the
deadband must be uniformly distributed between 0 and Aé,
to insure positive control. Therefore,

p(6) = 1/A6, (10)
The probability density function of the frequency is
p(f) = p(6r)|dby/df:| (11)
where
dfy/d6; = (Aby — 26,)/126.][Ab,] (12)

Substituting (12) into (11) gives

p(f1) = (1/A60){26, Aby/(Aby — 26,)] = 26,/(A6, — 26))
(13)

The statistical mean of fiis:
- Aby
f1= fo Nip(fdfy =

Afo 91 Aao —_ (91)2 g (Aeo
fo 26,(A60)? a0 = 120,) 1)

The conditions for & maximum limit-cycle frequency can
be obtained from Eq. (12):

91|max frequency %Aoo (15)
The corresponding maximum frequency is
fl“max = A00/80r (16)

The corresponding oscillation periods for average and maxi-
mum propellant consumption are given in Egs. (17) and
(18), respectively:

tl‘most probable = 120r/A00 (17)
tl‘max = 80r/A00 (18)
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Table 1 Limit e¢ycle flowrate numerical coefficients

Most
probable Maximum
Pair of single thrusters % 1
Pair of coupled thrusters 3 1

The total average propellant consumption for these two
cases is determined by substituting in Eq. (8):

w‘most probable = %(AI) 27‘/Jgrlsp (19)

and

Wmax = (ADY/J0.1, (20)

If only single thrusters are used instead of a pair of coupled
thrusters to provide control, the average propellant con-
sumption is reduced by a factor of 4. This is because the
oscillation frequency is reduced by a factor of 2 as is the total
propellant expended per firing. The corresponding flowrate
relationships are given in Eqs. (21) and (22):

’17)1 most probable = %(AZ) 27'/:]07159 (21)

’b‘()l max — %(AI) 27‘/]011513 (22)

The numerical coefficients for these four cases are summarized
in Table 1.
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Comments on “Application of Biot’s
Variational Method to Conveclive

Heating of a Slab”

C. L. Gupra*
Cenlral Building Research Institute,
Roorkee, India

N the improved approximation, wherein the change of ¢
caused by variation of 8; will be taken into account, Eqgs.
(13) and (14) and the expression for @i, combined to give
Eq. (15) do not seem to completely account for g being
included in #;. Even though the final results in the approxi-
mate cases come out to be the same here, the final equation
analogous to (15) is different. Proceeding from first prin-

ciples:
oH 0,2 2k
=6, [ — = 14+ —F—%
& ! <OQ1> 2=0 3 { + (uQI + Qk)}

D and V are the same as before. Upon differentiating,

oV _ ¥l 2 ko
Y {10 T [(uq1 T 2k)]}

oD 13 4 I 9 1
AP B T A A S S S .
oG et {31576 + 63 (uq, + 2k)2 + 21 (ug: + 2]{;)} @iq1

Combining these, the Lagrangian equation including the
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change in ¢ caused by variation of 6 [analogous to Eq.
(15)] becomes

E+l[_4’L]+l[ 2 ] o
105 21 L2k + uq)? 7 L2k + uq) o=

k47 2 2k
“ {ﬁ +t% [(% i uql)]}

and not Eq. (15) as given in Ref. 1.
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Reply by Author to C. L. Gupta’s

Comment

Huga N. CrU*
Rocketdyne, a Division of North American Aviation Inc.,
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HERE is an alternative way of deriving the expressions

in the preceding comments, the Lagrangian multiplier
method. Introducing the multiplier A, one obtains three
equations relating ¢;, 6;, and A. In this way one need not
decide whether to work with ¢, or 6y, a priori. Either the
preceding method or the Lagrangian multiplier method is
mandatory, if the problem is regarded as one of purely mathe-
matical exercise after the introduction of Eq. (4).

A third alternative is to do away with Eq. (1) and there-
fore regard 6, and ¢, as two independent generalized coordi-
nates. In place of Eq. (14) one would then have an equa-
tion derived by variation with respect to 6,. This is per-
fectly agreeable since Eq. (1) is simply a statement of
Fourier’s law, which may be approximated in the Biot vari-
ational scheme. This alternative also represents a mathe-
matically correct method.

All these alternatives are more cumbersome than the one
presented in my paper, whereas they improve the numerical
results negligibly. For example, using Gupta’s expressions,
the result ¢ = 2.646(kt/c.,)V/? is obtained, instead of my
@ = 2.66(kt/c,)V?, a difference of less than 19%. In my
paper, recognition is made of the fact that although Fourier’s
law may be approximated it does not have to be approxi-
mated. Since the effect of the convective boundary condi-
tion is the primary concern of the paper, Eq. (1) is adopted
with the qualification that 6, is not regarded as a generalized
coordinate but as a given function of ¢. Physically one real-
izes that ¢i is a rather arbitrarily defined quantity but 6 is
not. Once Eq. (13) is obtained, the variational stage is
past and any given function will enable one to obtain a
solution of q,(f). Equation (4) fills this role and at the same
time describes what happens near the boundary precisely.
So Eq. (4) is adopted. In the problem of my paper, engineers
are, more often than not, interested in accurately determining
8, rather than ¢;. The method of my paper enables the de-
termination of 6, less sensitively affected than ¢; is by a
change in the assumed temperature profile from the quadratic
to the cubic. I had the Lagrangian multiplier scheme in
mind when I worked on the paper, but it was discarded along
with some other encumbrances in favor of the simplified
scheme presented in my paper.
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